Summary of Threading & Async & Await

Threading (Multithreading)

Definition: A technique for running multiple tasks
concurrently within the same process using multiple
threads.

When to use? When executing CPU-intensive tasks
(e.g., complex calculations) on a multi-core
processor.

Disadvantages:

Managing threads is complex (Race Conditions,
Deadlocks).

High resource consumption due to multiple threads

def print_numbers():
for 1 in range(5):
print(i)

thread = threading.Thread(target=print_numbers)
thread.start()

print("Main thread does not wait for the new thread")




Async & Await (Asynchronous Programming)

Definition: Asynchronous programming allows
tasks to run independently without blocking
execution.

When to use? When handling slow 1I/0 operations
(e.g., web requests, file reading) without freezing
the program.

How it works?
e async defines an asynchronous function
(Coroutine).
® await pauses execution until the awaited task
completes but does not block other tasks

import asyncio

async def sa
print("H
awailt sleep(2)
print("After 2 seconds"]

async def main():
awalt asyncio.gather(say_hello(), sa

asyncio.run{main())




by Ali Hatem
Cis team




