

Object and Class in OOP

Class:

• A class is a blueprint or template for creating objects.

• It defines the properties (attributes) and behaviors (methods) that the objects

created from the class will have.

• For example, a Car class might have properties like color, model, and speed, and

methods like accelerate() and brake().

Object:

• An object is an instance of a class.

• It is a concrete entity created from the class blueprint, with its own unique state

(values for properties).

• For example, if Car is a class, then myCar (a specific car with color = "Red" and

model = "Toyota") is an object

•

Constructor in OOP
What is a Constructor?

• A constructor is a special method in a class that is automatically called when an

object of that class is created.

• It is used to initialize the object's properties or perform any setup required for the

object.

Key Features of Constructors:

1. Name: The constructor has the same name as the class.

2. No Return Type: Unlike regular methods, constructors do not have a return type

(not even void).

3. Automatic Execution: A constructor is automatically called when an object is

created using the new keyword.

4. Overloading: You can have multiple constructors in a class with different

parameters (this is called constructor overloading).

Types of Constructors:

1. Default Constructor:

a. A constructor with no parameters.

b. If you don't define any constructor, the compiler automatically provides a

default constructor.

2. Parameterized Constructor:

a. A constructor that takes parameters to initialize the object with specific

values.

3. Copy Constructor:

a. A constructor that creates an object by copying values from another object of

the same class.

Example in C#:

Access Modifiers in OOP

What are Access Modifiers?

• Access modifiers are keywords used to control the visibility and accessibility of
classes, methods, properties, and other members in object-oriented programming.

• They define the scope of where a member (class, method, property, etc.) can be
accessed.

Common Access Modifiers:

1. public:
a. The member is accessible from anywhere.
b. Example: A public method can be called from any other class.

2. private:
a. The member is accessible only within the same class.
b. Example: A private field can only be accessed or modified by methods within

the same class.
3. protected:

a. The member is accessible within the same class and derived (child)
classes.

b. Example: A protected method can be accessed by the class itself and any
subclass that inherits from it.

4. internal:
a. The member is accessible only within the same assembly (project).
b. Example: An internal class can be accessed by any code in the same project

but not from another project.
5. protected internal:

a. The member is accessible within the same assembly and also by derived
classes in other assemblies.

b. Combines the behavior of protected and internal.

6. private protected (C# 7.2+):

a. The member is accessible only within the same class or derived classes in

the same assembly.

b. Combines the behavior of private and protected.

c.

Properties and Encapsulation in OOP

What are Properties?

• Properties are members of a class that provide a flexible way to read, write, or

compute the values of private fields.

• They act as a bridge between the outside world and the internal state of an object.

• Properties typically have a getter (to read the value) and a setter (to write the

value).

• What is Encapsulation?

• Encapsulation is one of the four fundamental principles of OOP (along with

inheritance, polymorphism, and abstraction).

• It refers to the bundling of data (fields) and methods (functions) that operate on the

data into a single unit (a class).

• Encapsulation also involves restricting direct access to some of an object's

components, which is achieved using access modifiers (like private) and

properties.

• How Properties and Encapsulation Work Together

• Private Fields: Data is stored in private fields to prevent direct access from outside

the class.

• Public Properties: Properties provide controlled access to these private fields

using get and set accessors.

• Validation: Properties allow you to add logic (e.g., validation) when getting or

setting values

Inheritance in OOP

What is Inheritance?

• Inheritance is one of the four fundamental principles of Object-Oriented

Programming (OOP).

• It allows a class (called a child class or subclass) to inherit properties and methods

from another class (called a parent class or superclass).

• Inheritance promotes code reusability and establishes a hierarchical

relationship between classes.

• Key Concepts of Inheritance:

• Parent Class (Base Class):

o The class whose properties and methods are inherited.

o Example: A Vehicle class with properties like Speed and methods like

Move().

• Child Class (Derived Class):

o The class that inherits from the parent class.

o Example: A Car class that inherits from Vehicle and adds its own properties

like NumberOfDoors.

• Reusability:

o The child class can reuse the code from the parent class, reducing

duplication.

• Extensibility:

o The child class can extend the functionality of the parent class by adding new

properties or methods.

• Method Overriding:

o The child class can override methods from the parent class to provide its own

implementation

Types of Inheritance:

1. Single Inheritance:

a. A class inherits from only one parent class.

b. Example: Car inherits from Vehicle.

2. Multilevel Inheritance:

a. A class inherits from a parent class, which in turn inherits from another class.

b. Example: Car inherits from Vehicle, and Vehicle inherits from Machine.

3. Hierarchical Inheritance:

a. Multiple classes inherit from a single parent class.

b. Example: Car and Bike both inherit from Vehicle.

4. Multiple Inheritance (Not supported in C#):

a. A class inherits from more than one parent class.

b. Example: Car inherits from Vehicle and Machine (not allowed in C#).

Polymorphism in OOP

What is Polymorphism?

• Polymorphism is one of the four fundamental principles of Object-Oriented

Programming (OOP).

• The word "polymorphism" comes from Greek, meaning "many forms."

• It allows objects of different classes to be treated as objects of a common parent

class, enabling a single interface to represent different underlying forms (data

types).

Key Concepts of Polymorphism:

• One Interface, Multiple Implementations:

o Polymorphism allows methods to behave differently based on the object that

invokes them.

o For example, a Draw() method can behave differently for a Circle object

and a Square object.

• Types of Polymorphism:

o Compile-Time Polymorphism (Static Polymorphism):

▪ Achieved through method overloading (multiple methods with the

same name but different parameters).

o Run-Time Polymorphism (Dynamic Polymorphism):

Method Overriding:

• The child class can override a method from the parent class to provide its own

implementation.

• In C#, this is done using the virtual keyword in the parent class and the override

keyword in the child class.

Summary:

• Polymorphism allows objects of different classes to be treated as objects of a

common parent class.

• It is achieved through method overriding (run-time polymorphism) and method

overloading (compile-time polymorphism).

• Polymorphism promotes flexibility, extensibility, and code reusability in OOP.

Polymorphism is a powerful feature that enables you to write clean, modular, and

maintainable code.

Abstraction in OOP

What is Abstraction?

• Abstraction is one of the four fundamental principles of Object-Oriented

Programming (OOP).

• It focuses on hiding the internal implementation details of an object and

exposing only the necessary features or functionalities to the outside world.

• Abstraction allows you to work with objects at a higher level, without worrying

about how they work internally.

• Key Concepts of Abstraction:

• Hide Complexity:

o Abstraction simplifies complex systems by breaking them into smaller,

manageable parts.

o For example, when you drive a car, you don’t need to know how the engine

works; you only need to know how to use the steering wheel, pedals, and

gears.

• Focus on What, Not How:

o Abstraction focuses on what an object does rather than how it does it.

• Achieved Through:

o Abstract Classes: Classes that cannot be instantiated and may contain

abstract methods (methods without implementation).

o Interfaces: Contracts that define a set of methods a class must implement.

•

Struct in OOP
What is a Struct?

• A struct (short for structure) is a value type in C# that encapsulates a group of

related variables.

• It is similar to a class but is typically used for lightweight objects that do not require

inheritance or reference-type behavior.

Structs are stored on the stack (unless they are part of a class), making them more

efficient for small, simple data structure

 Key Features of Structs:

1. Value Type:

a. Structs are value types, meaning they hold their data directly rather than

referencing it (like classes do).

b. When a struct is assigned to a new variable, a copy of the struct is created.

2. No Inheritance:

a. Structs cannot inherit from other structs or classes, and they cannot be used

as a base for other structs or classes.

b. However, they can implement interfaces.

3. Default Constructor:

a. Structs automatically have a default constructor that initializes all fields to

their default values (e.g., 0 for integers, false for booleans).

4. Immutability:

a. Structs are often used for immutable data types, where the values do not

change after creation.

5. Performance:

a. Structs are more efficient than classes for small, frequently used data

structures because they are allocated on the stack.

When to Use a Struct:

1. Small Data Structures:

a. Use structs for small, simple data structures that do not require inheritance

or polymorphism.

b. Example: A Point or Rectangle in a graphics application.

2. Immutable Data:

a. Use structs for immutable data types where the values do not change after

creation.

3. Performance-Critical Scenarios:

a. Use structs when performance is critical, as they are allocated on the stack

and avoid the overhead of garbage collection

Limitations of Structs:
1. No Inheritance:

a. Structs cannot inherit from other structs or classes.

2. No Custom Default Constructor:

a. You cannot define a custom default constructor for a struct.

3. Size Limitations:

a. Structs should be small (typically less than 16 bytes) to avoid performance

issues.

What is an Interface?

An interface in C# is a contract that defines a set of methods, properties, events, or

indexers that a class or struct must implement. It specifies what a class should do, but not

how it should do it. Interfaces are used to achieve abstraction and multiple inheritance

in C#.
Key Points:

1. Abstraction: Interfaces provide a way to define a blueprint for classes without

implementing the actual functionality.

2. Multiple Inheritance: A class can implement multiple interfaces, allowing it to

inherit behavior from multiple sources.

Interface vs Abstract Class

Multiple Inheritance with Interfaces:

In C#, a class can implement multiple interfaces, allowing it to inherit behavior from

multiple sources. Here's an example:

Explicit Interface Implementation:
When a class implements multiple interfaces with the same method signature, you can use

explicit interface implementation to avoid conflicts. This allows you to specify which

interface's method is being implemented.

Association, Aggregation, and Composition
Association

• Definition: A relationship between two or more classes where objects of one class

are connected to objects of another class. It can be a one-to-one, one-to-many, or

many-to-many relationship.

• Characteristics:

o Objects can exist independently.

o No ownership is implied.

o

• Example: A Teacher and a Student are associated because a teacher teaches

students, but both can exist independently.

•

Aggregation

• Definition: A specialized form of association where one class represents a "whole"
and the other represents a "part." The "part" can exist independently of the "whole."

• Characteristics:
o Represents a "has-a" relationship.
o The "part" can belong to multiple "wholes."
o No strong lifecycle dependency.

• Example: A Department has Professors, but professors can exist even if the
department is deleted.

Composition

• Definition: A stronger form of aggregation where the "part" cannot exist without

the "whole." The lifecycle of the "part" is tightly coupled with the "whole."

• Characteristics:

o Represents a "contains-a" relationship.

o The "part" cannot exist independently.

o If the "whole" is destroyed, the "part" is also destroyed.

• Example: A Car has an Engine. The engine cannot exist without the car.

Enum in OOP

What is an Enum?

• An enum (short for enumeration) is a special data type in C# that allows you to

define a set of named constants.

• It is used to represent a fixed set of values, making the code more readable and

maintainable.

• Enums are value types and are stored on the stack

•

• Key Features of Enums:
• Named Constants:

o Enums provide a way to assign meaningful names to integral values.
o Example: Instead of using 0, 1, and 2 to represent days of the week, you can

use Day.Monday, Day.Tuesday, etc.
• Type Safety:

o Enums ensure type safety by restricting the values that can be assigned to a
variable.

• Underlying Type:
o By default, the underlying type of an enum is int, but you can specify other

integral types (e.g., byte, short, long).
• Immutability:

o Enum values are constants and cannot be changed at runtime.
• Useful for Switch Statements:

o
•

Static Types in OOP

What are Static Types?

• In Object-Oriented Programming (OOP), static types refer to members (fields,

properties, methods, or classes) that belong to the type itself rather than to a

specific instance of the type.

• Static members are shared across all instances of a class and can be accessed

directly using the class name, without creating an object.

Key Features of Static Types:

1. Shared Across Instances:

a. Static members are shared by all instances of a class. Changing a static

member affects all instances.

2. No Instance Required:

a. Static members can be accessed directly using the class name, without

creating an instance of the class.

3. Lifetime:

a. Static members are created when the program starts and remain in memory

until the program ends.

4. Common Use Cases:

a. Utility methods (e.g., Math.Sqrt).

b. Constants (e.g., Math.PI).

c. Singleton design pattern.

d. Counters or shared state.

Key Benefits of Static Types:

1. Memory Efficiency:

a. Static members are allocated once and shared across all instances, reducing

memory usage.

2. Global Access:

a. Static members can be accessed globally without creating an instance of the

class.

3. Utility Functions:

a. Static classes and methods are ideal for utility functions that do not depend

on instance-specific data.

4. Singleton Pattern:

a. Static members are often used to implement the Singleton design pattern,

ensuring only one instance of a class exists

. Limitations of Static Types:

5. No Instance-Specific Data:

a. Static members cannot access instance-specific data or methods.

6. Global State:

a. Overuse of static members can lead to global state, making the code harder to

test and maintain.

7. Thread Safety:

a. Static members can cause thread-safety issues in multi-threaded applications

if not properly synchronized.

	Object and Class in OOP
	Class:
	Object:

	Constructor in OOP
	What is a Constructor?
	Key Features of Constructors:
	Types of Constructors:
	Example in C#:

	Access Modifiers in OOP
	What are Access Modifiers?
	Common Access Modifiers:
	What are Properties?

	Inheritance in OOP
	What is Inheritance?

	Polymorphism in OOP
	What is Polymorphism?
	Method Overriding:
	What is Abstraction?

	Struct in OOP
	What is a Struct?
	When to Use a Struct:
	What is an Interface?
	Key Points:

	Interface vs Abstract Class
	Explicit Interface Implementation:
	Association
	Aggregation

	Composition
	Key Features of Static Types:

